Landauer's principle (and indeed, the second law of thermodynamics itself) can also be understood to be a direct logical consequence of the underlying reversibility of physics, as is reflected in the general Hamiltonian formulation of mechanics, and in the unitary time-evolution operator of quantum mechanics more specifically.In the context of reversible physics, the phenomenon of entropy increase (and the observed arrow of time) can be understood to be consequences of the fact that our evolved predictive capabilities are rather limited, and cannot keep perfect track of the exact reversible evolution of complex physical systems, especially since these systems are never perfectly isolated from an unknown external environment, and even the laws of physics themselves are still not known with complete precision. Thus, we (and physical observers generally) always accumulate some uncertainty about the state of physical systems, even if the system's true underlying dynamics is a perfectly reversible one that is subject to no entropy increase if viewed from a hypothetical omniscient perspective in which the dynamical laws are precisely known. Read more
social network | email spam | customer retention | text in email | email marketing best practices
No comments:
Post a Comment